AI Image Processing Requirements
AI Image Processing Requirements
Overview
This document specifies the technical requirements for implementing Background AI Image Processing in the Plings object creation system. The feature integrates AI-powered image analysis into the existing non-blocking image upload workflow to provide intelligent suggestions for object metadata, classification, and duplicate detection.
Integration with Existing System
Current Implementation Status
β Foundation Ready:
- Image upload system with background processing
- Non-blocking user experience design
- State management for upload progress tracking
- Direct Supabase Storage integration
- CreateObjectModal with extensible architecture
π Extensions Required:
- AI analysis state management
- Suggestion UI components
- Backend AI service integration
- Progressive enhancement framework
Technical Architecture
Frontend Component Extensions
1. Enhanced Image Upload State
Extend existing ImageUploadState:
interface AIEnhancedImageUploadState extends ImageUploadState {
localImages: (LocalImage & {
// AI Processing Extensions
aiAnalysisStatus: 'pending' | 'analyzing' | 'completed' | 'failed' | 'disabled';
aiResults?: AIAnalysisResult;
aiConfidence?: number;
aiProcessingTime?: number;
aiError?: string;
})[];
// Global AI Settings
aiEnabled: boolean;
aiPreferences: AIUserPreferences;
}
interface AIAnalysisResult {
classification: ObjectClassification;
brandDetection: BrandDetection;
visualProperties: VisualProperties;
similarObjects: SimilarObject[];
nameSuggestions: NameSuggestion[];
confidenceScore: number;
processingTime: number;
}
interface AIUserPreferences {
autoAcceptClassification: boolean;
autoAcceptNameSuggestions: boolean;
showSimilarObjectWarnings: boolean;
duplicateDetectionThreshold: number; // 0.0 - 1.0
preferredAIMode: 'suggestions' | 'auto' | 'disabled';
}
2. AI Suggestion Components
Create new React components:
src/components/objects/creation/ai/
βββ AISuggestionProvider.tsx # Context provider for AI state
βββ AIAnalysisIndicator.tsx # Processing progress indicator
βββ AIClassificationSuggestion.tsx # Object type suggestions
βββ AINameSuggestions.tsx # Smart name generation
βββ AIPropertySuggestions.tsx # Visual property extraction
βββ AISimilarObjectsWarning.tsx # Duplicate detection alert
βββ AIConfidenceDisplay.tsx # Show confidence scores
βββ AISettingsPanel.tsx # User preference controls
βββ hooks/
βββ useAIAnalysis.tsx # AI processing hook
βββ useAISuggestions.tsx # Suggestion management
βββ useAIPreferences.tsx # User preference management
3. CreateObjectModal Integration
Enhanced modal with AI components:
const CreateObjectModal = () => {
const { aiEnabled, aiResults, aiPreferences } = useAIAnalysis();
return (
<Modal>
{/* Existing image upload section */}
<ImageUploadSection onImageUpload={handleImageUpload} />
{/* AI Analysis Section - NEW */}
{aiEnabled && (
<AIAnalysisSection>
<AIAnalysisIndicator />
{aiResults && (
<>
<AIClassificationSuggestion />
<AINameSuggestions />
<AIPropertySuggestions />
<AISimilarObjectsWarning />
</>
)}
</AIAnalysisSection>
)}
{/* Enhanced existing sections with AI integration */}
<ObjectDetailsForm
aiSuggestions={aiResults?.nameSuggestions}
aiProperties={aiResults?.visualProperties}
/>
{/* Existing organization and location sections */}
</Modal>
);
};
Backend AI Service Architecture
1. AI Analysis Service
New backend service for image processing:
class AIAnalysisService:
def __init__(self):
self.vision_client = OpenAIVisionClient()
self.similarity_engine = ObjectSimilarityEngine()
self.brand_detector = BrandDetectionService()
async def analyze_object_image(
self,
image_url: str,
user_id: str,
organization_id: str
) -> AIAnalysisResult:
"""
Comprehensive AI analysis of uploaded object image
"""
tasks = await asyncio.gather(
self._classify_object(image_url),
self._detect_brand(image_url),
self._extract_properties(image_url),
self._find_similar_objects(image_url, organization_id),
self._generate_name_suggestions(image_url, user_id),
return_exceptions=True
)
return self._combine_results(tasks)
2. GraphQL Schema Extensions
New operations for AI processing:
# AI Analysis Types
type AIAnalysisResult {
id: ID!
status: AIAnalysisStatus!
classification: ObjectClassification
brandDetection: BrandDetection
visualProperties: VisualProperties
similarObjects: [SimilarObject!]!
nameSuggestions: [NameSuggestion!]!
confidenceScore: Float!
processingTimeMs: Int!
createdAt: String!
}
type ObjectClassification {
category: String!
type: String!
subtype: String
confidence: Float!
alternativeTypes: [String!]!
}
type BrandDetection {
brand: String
model: String
detectedText: [String!]!
confidence: Float!
logoDetected: Boolean!
}
type VisualProperties {
colors: [String!]!
materials: [String!]!
estimatedSize: String
condition: String
style: String
confidence: Float!
}
type SimilarObject {
objectId: ID!
name: String!
similarity: Float!
matchReason: String!
thumbnail: String
organization: Organization!
}
type NameSuggestion {
suggestion: String!
reasoning: String!
confidence: Float!
includesUserPattern: Boolean!
includesBrandInfo: Boolean!
}
enum AIAnalysisStatus {
PENDING
ANALYZING
COMPLETED
FAILED
CANCELLED
}
# Mutations
mutation analyzeObjectImage($input: AnalyzeImageInput!) {
analyzeObjectImage(input: $input) {
analysisId: ID!
estimatedCompletionTime: Int!
status: AIAnalysisStatus!
}
}
mutation updateAIPreferences($input: AIPreferencesInput!) {
updateAIPreferences(input: $input) {
preferences: AIUserPreferences!
}
}
# Queries
query getAIAnalysis($analysisId: ID!) {
aiAnalysis(id: $analysisId) {
...AIAnalysisResult
}
}
query getAIPreferences {
myAIPreferences {
...AIUserPreferences
}
}
# Subscriptions
subscription aiAnalysisProgress($analysisId: ID!) {
aiAnalysisUpdate(analysisId: $analysisId) {
status: AIAnalysisStatus!
progress: Float!
partialResults: AIAnalysisResult
estimatedTimeRemaining: Int
}
}
AI Service Integrations
1. Image Classification Service
OpenAI Vision API Integration:
interface VisionAPIConfig {
provider: 'openai' | 'google' | 'aws';
apiKey: string;
model: string;
maxTokens: number;
temperature: number;
}
const classificationPrompt = `
Analyze this image of a physical object and provide:
1. Category (furniture, electronics, tools, etc.)
2. Specific type (lamp, screwdriver, laptop, etc.)
3. Subtype if applicable (desk lamp, Phillips head screwdriver, etc.)
4. Confidence score (0.0-1.0)
5. Alternative classifications
Return as JSON format.
`;
2. Brand Detection Service
OCR + Logo Recognition:
interface BrandDetectionConfig {
ocrProvider: 'tesseract' | 'google' | 'aws';
logoRecognitionProvider: 'google' | 'clarifai';
confidenceThreshold: number;
supportedBrands: string[];
}
3. Similar Object Search
Vector Similarity Engine:
class ObjectSimilarityEngine:
def __init__(self):
self.embedding_model = ImageEmbeddingModel()
self.vector_db = VectorDatabase()
async def find_similar_objects(
self,
image_url: str,
organization_id: str,
threshold: float = 0.75
) -> List[SimilarObject]:
# Generate image embedding
embedding = await self.embedding_model.embed_image(image_url)
# Search vector database
similar = await self.vector_db.similarity_search(
embedding,
organization_filter=organization_id,
threshold=threshold
)
return similar
User Interface Specifications
1. AI Analysis Progress Indicator
Component: AIAnalysisIndicator.tsx
const AIAnalysisIndicator = ({ analysis }: { analysis: AIAnalysis }) => {
return (
<div className="ai-analysis-indicator">
<div className="analysis-status">
<AiIcon className="animate-spin" />
<span>Analyzing image...</span>
<ProgressBar value={analysis.progress} />
</div>
<div className="analysis-steps">
<Step completed={analysis.classificationComplete}>
Object classification
</Step>
<Step completed={analysis.brandDetectionComplete}>
Brand detection
</Step>
<Step completed={analysis.similaritySearchComplete}>
Finding similar objects
</Step>
</div>
<div className="estimated-time">
~{analysis.estimatedTimeRemaining}s remaining
</div>
</div>
);
};
2. Classification Suggestion Component
Component: AIClassificationSuggestion.tsx
const AIClassificationSuggestion = ({
classification,
onAccept,
onReject
}: ClassificationSuggestionProps) => {
return (
<Card className="ai-suggestion classification">
<CardHeader>
<div className="suggestion-header">
<BrainIcon />
<span>AI Classification</span>
<ConfidenceBadge confidence={classification.confidence} />
</div>
</CardHeader>
<CardContent>
<div className="classification-result">
<h3>{classification.type}</h3>
<p className="category">Category: {classification.category}</p>
{classification.subtype && (
<p className="subtype">Subtype: {classification.subtype}</p>
)}
</div>
{classification.alternativeTypes.length > 0 && (
<div className="alternatives">
<span>Or maybe:</span>
{classification.alternativeTypes.map(type => (
<Button
key={type}
variant="outline"
size="sm"
onClick={() => onAccept(type)}
>
{type}
</Button>
))}
</div>
)}
</CardContent>
<CardActions>
<Button onClick={onAccept} variant="primary">
Accept Classification
</Button>
<Button onClick={onReject} variant="outline">
Choose Different
</Button>
<Button onClick={() => {}} variant="ghost">
Ignore Suggestion
</Button>
</CardActions>
</Card>
);
};
3. Similar Objects Warning Component
Component: AISimilarObjectsWarning.tsx
const AISimilarObjectsWarning = ({
similarObjects,
onViewObject,
onCreateAnyway,
onMarkDifferent
}: SimilarObjectsWarningProps) => {
const highSimilarity = similarObjects.filter(obj => obj.similarity > 0.8);
if (highSimilarity.length === 0) return null;
return (
<Alert variant="warning" className="similar-objects-warning">
<AlertTriangleIcon />
<AlertTitle>Possible Duplicate Detected</AlertTitle>
<AlertDescription>
We found {highSimilarity.length} similar object(s) that might be
the same as what you're creating:
</AlertDescription>
<div className="similar-objects-list">
{highSimilarity.map(obj => (
<div key={obj.objectId} className="similar-object-item">
<img src={obj.thumbnail} alt={obj.name} />
<div className="object-info">
<h4>{obj.name}</h4>
<p>{obj.organization.name}</p>
<Badge variant="secondary">
{Math.round(obj.similarity * 100)}% match
</Badge>
</div>
<Button
variant="outline"
size="sm"
onClick={() => onViewObject(obj.objectId)}
>
View Object
</Button>
</div>
))}
</div>
<AlertActions>
<Button onClick={onCreateAnyway} variant="primary">
Create Anyway
</Button>
<Button onClick={onMarkDifferent} variant="outline">
This is Different
</Button>
</AlertActions>
</Alert>
);
};
4. AI Settings Panel
Component: AISettingsPanel.tsx
const AISettingsPanel = ({
preferences,
onUpdatePreferences
}: AISettingsPanelProps) => {
return (
<Card className="ai-settings-panel">
<CardHeader>
<CardTitle>AI Assistant Settings</CardTitle>
</CardHeader>
<CardContent>
<div className="settings-grid">
<Toggle
checked={preferences.autoAcceptClassification}
onCheckedChange={(checked) =>
onUpdatePreferences({
...preferences,
autoAcceptClassification: checked
})
}
>
Auto-accept object classifications
</Toggle>
<Toggle
checked={preferences.autoAcceptNameSuggestions}
onCheckedChange={(checked) =>
onUpdatePreferences({
...preferences,
autoAcceptNameSuggestions: checked
})
}
>
Auto-apply name suggestions
</Toggle>
<Toggle
checked={preferences.showSimilarObjectWarnings}
onCheckedChange={(checked) =>
onUpdatePreferences({
...preferences,
showSimilarObjectWarnings: checked
})
}
>
Warn about similar objects
</Toggle>
<div className="slider-setting">
<label>Duplicate Detection Sensitivity</label>
<Slider
value={preferences.duplicateDetectionThreshold}
onValueChange={(value) =>
onUpdatePreferences({
...preferences,
duplicateDetectionThreshold: value
})
}
min={0.5}
max={0.95}
step={0.05}
/>
</div>
<Select
value={preferences.preferredAIMode}
onValueChange={(mode) =>
onUpdatePreferences({
...preferences,
preferredAIMode: mode
})
}
>
<SelectTrigger>
<SelectValue placeholder="AI Mode" />
</SelectTrigger>
<SelectContent>
<SelectItem value="suggestions">Show Suggestions</SelectItem>
<SelectItem value="auto">Auto-Apply</SelectItem>
<SelectItem value="disabled">Disabled</SelectItem>
</SelectContent>
</Select>
</div>
</CardContent>
</Card>
);
};
Performance Requirements
AI Processing Performance
- Analysis Completion: <30 seconds for comprehensive analysis
- Classification Speed: <5 seconds for basic object type
- Similar Object Search: <10 seconds for organization-wide search
- Name Generation: <3 seconds for suggestion list
- Progressive Results: Show partial results as they complete
Frontend Performance
- State Updates: Real-time progress without blocking UI
- Memory Usage: Efficient handling of AI result data
- Network Optimization: Minimal API calls for results polling
- Fallback Performance: Graceful degradation when AI unavailable
Backend Performance
- Concurrent Processing: Handle multiple AI analyses simultaneously
- Rate Limiting: Prevent abuse of AI services
- Caching Strategy: Cache results for identical images
- Cost Management: Monitor and limit AI service usage
Error Handling and Fallbacks
AI Service Failures
Graceful Degradation Strategy:
interface AIErrorHandling {
// Service unavailable
onServiceUnavailable: () => void; // Continue without AI
// Analysis timeout
onAnalysisTimeout: () => void; // Show partial results
// Invalid image
onInvalidImage: () => void; // Skip AI, proceed normally
// Rate limit exceeded
onRateLimitExceeded: () => void; // Queue for later processing
// Authentication failure
onAuthFailure: () => void; // Disable AI temporarily
}
User Experience During Errors
- Transparent Communication: Clear error messages
- Continued Functionality: Object creation works without AI
- Retry Options: Manual retry for failed analyses
- Settings Override: Disable AI if repeatedly failing
Security and Privacy
Image Processing Security
- Secure Transmission: All AI service calls over HTTPS
- No Data Retention: Configure AI services for zero retention
- Access Control: Only authorized users can trigger AI analysis
- Audit Logging: Log all AI processing requests and results
Privacy Controls
- User Opt-out: Complete disable of AI processing
- Organization Settings: Admin control over AI features
- Data Locality: Option for local AI processing
- Consent Management: Clear user consent for AI analysis
API Security
- Authentication: Secure AI service API keys
- Rate Limiting: Prevent abuse and cost overruns
- Input Validation: Sanitize all inputs to AI services
- Error Sanitization: Donβt expose internal errors to frontend
Testing Requirements
AI Integration Testing
describe('AI Image Processing', () => {
test('should trigger AI analysis after image upload', async () => {
// Test AI analysis initiation
});
test('should handle AI analysis results progressively', async () => {
// Test progressive result display
});
test('should fallback gracefully when AI fails', async () => {
// Test error handling and fallbacks
});
test('should respect user AI preferences', async () => {
// Test preference application
});
test('should detect similar objects accurately', async () => {
// Test duplicate detection
});
});
Performance Testing
- Load Testing: Multiple concurrent AI analyses
- Stress Testing: High-volume image processing
- Timeout Testing: Long-running AI operations
- Memory Testing: AI result data handling
User Experience Testing
- A/B Testing: With vs without AI suggestions
- Usability Testing: AI suggestion interfaces
- Accessibility Testing: AI components with screen readers
- Mobile Testing: AI features on mobile devices
Deployment and Configuration
Environment Configuration
# AI Service Configuration
ai_services:
vision_api:
provider: "openai"
api_key: "${OPENAI_API_KEY}"
model: "gpt-4-vision-preview"
timeout: 30000
similarity_search:
enabled: true
threshold: 0.75
max_results: 5
brand_detection:
enabled: true
ocr_provider: "google"
logo_detection: true
ai_features:
enabled: true
auto_trigger: true
max_concurrent_analyses: 10
cache_results: true
cache_duration: "24h"
Feature Flags
interface AIFeatureFlags {
aiProcessingEnabled: boolean;
classificationEnabled: boolean;
brandDetectionEnabled: boolean;
similarObjectSearchEnabled: boolean;
nameGenerationEnabled: boolean;
realTimeProgressEnabled: boolean;
}
Monitoring and Analytics
- AI Processing Metrics: Success rates, processing times, costs
- User Engagement: Suggestion acceptance rates, feature usage
- Error Monitoring: Failed analyses, service outages, timeouts
- Cost Tracking: AI service usage and spending
Related Documentation
Integration References
- Use Case: ai-image-processing.md - Business requirements and user stories
- Current System: object-creation-requirements.md - Existing modal architecture
- Image System: image-management.md - Current image handling
Implementation Dependencies
- Backend API: AI service integration and GraphQL schema
- Image Upload: Extension of existing background upload system
- State Management: Enhancement of current upload state tracking
- UI Components: New suggestion and settings components
Requirements Document Created: MΓ₯n 7 Jul 2025 10:55:32 CEST - Technical specifications for Background AI Image Processing integration